Admissible quiver, derived from $m$ pairwise non-equivalent exponent matrices
نویسندگان
چکیده
منابع مشابه
An uncountable family of pairwise non-Kakutani equivalent smooth diffeomorphisms
We construct an uncountable family of smooth ergodic zero-entropy diffeomorphisms that are pairwise non-Kakutani equivalent, on any smooth compact connected manifold of dimension greater than two, on which there exists an effective smooth circle action preserving a positive smooth volume. To that end, we first construct a smooth ergodic zero-entropy and non-Loosely Bernoulli diffeomorphism, by ...
متن کاملEfficient weight vectors from pairwise comparison matrices
Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is called efficient if no other weight vector is at least as good in approximating the elements of the pairwise comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the pairwise ratios cannot be improved in all nondiagonal positions. We show t...
متن کاملDeriving weights from general pairwise comparison matrices
The problem of deriving weights from pairwise comparison matrices has been treated extensively in the literature. Most of the results are devoted to the case when the matrix under consideration is reciprocally symmetric (i.e., the i, j-th element of the matrix is reciprocal to its j, i-th element for each i and j). However, there are some applications of the framework when the underlying matric...
متن کاملOn the spectra of some matrices derived from two quadratic matrices
begin{abstract} The relations between the spectrum of the matrix $Q+R$ and the spectra of the matrices $(gamma + delta)Q+(alpha + beta)R-QR-RQ$, $QR-RQ$, $alpha beta R-QRQ$, $alpha RQR-(QR)^{2}$, and $beta R-QR$ have been given on condition that the matrix $Q+R$ is diagonalizable, where $Q$, $R$ are ${alpha, beta}$-quadratic matrix and ${gamma, delta}$-quadratic matrix, respectively, of ord...
متن کاملExponent matrices and their quivers
Exponent matrices appeared in the study of tiled orders over discrete valuation rings. Many properties of such orders are formulated using this notion. We think that such matrices are of interest in them own right, in particular, it is convenient to write finite partially ordered sets (posets) and finite metric spaces as special exponent matrices. Note that when we defined a quiver Q(E) of a re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Researches in Mathematics
سال: 2016
ISSN: 2664-5009,2664-4991
DOI: 10.15421/241606